
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Graph Neural Networks and their
Temporal Variants

Jiří Liška

Supervisor: Ing. Radek Mařík, CSc.
Field of study: Open Informatics
Subfield: Artificial Intelligence and Computer Science
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

498838 Personal ID number: Liška Jiří Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Graph Neural Networks and Their Temporal Variants

Bachelor’s thesis title in Czech:

Grafové neuronové sítě a jejich temporální varianty

Guidelines:

The aim of the project is to create an overview of methods dealing with graph neural networks and their temporal
modifications. The review will focus on their properties and possibilities of application deployment.
Steps:
1. Create a survey of methods focusing on graph neural networks (GNNs). Include also their temporal modifications
(tGNNs).
2. Select an appropriate dataset to demonstrate the specific properties of GNNs and tGNNs.
3. Implement a suitable experimental environment.
4. Verify experimentally the selected GNN and tGNN properties and provide a discussion of the obtained results.

Bibliography / sources:

[1] Lingfei Wu, Peng Cui , Jian Pei, and Liang Zhao: Graph Neural Networks: Foundations, Frontiers, and Applications.
Springer, 2022.
[2] Zhiyuan Liu, and Jie Zhou: Introduction to Graph Neural Networks, Morgan & Claypool, 2020.
[3]. Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and
Maosong Sun: Graph neural networks: A review of methods and applications, AI Open 1, 57–81, 2020.

Name and workplace of bachelor’s thesis supervisor:

Ing. Radek Mařík, CSc. Department of Telecommunications Engineering FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 15.01.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Dr. Ing. Jan Kybic

Head of department’s signature
Ing. Radek Mařík, CSc.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to sincerely thank my super-
visor, Ing. Radek Mařík, CSc., for his
advice and continual mentorship.

I am very grateful to my family for their
persistent support throughout my studies.

Declaration
I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodological instructions for observing
ethical principles in the preparation of
university theses.

In Prague, May 23, 2024.

. .

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o
dodržování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 23.května 2024.

. .

v

Abstract
This thesis aims to provide an overview

of Graph Neural Networks (GNNs), a
branch of neural networks designed to
work with graph data. Graphs are a gen-
eral data structure that can be used to
represent a wide range of complex do-
mains, including social networks, molecule
interactions and knowledge graphs. GNNs
have surpassed performance of traditional
machine learning algorithms and hand-
crafted heuristics on many graph datasets.

Until recently, graph neural networks
have been mainly applied to static graphs.
However, many real-world applications in-
volve dynamic graphs, where the underly-
ing graph structure changes over time. Ex-
tending graph neural networks to dynamic
graphs has proven to be a challenging task.
Nevertheless, temporal variants of graph
neural networks have shown promising re-
sults on real-world graph datasets. Both
static and temporal graph neural networks
are reviewed in the thesis.

Experiments with both static and dy-
namic graphs were performed and evalu-
ated. Static graph neural networks have
been applied to a novel domain of hiero-
glyph classification and achieved state-of-
the-art performance compared to previ-
ously used methods.

Keywords: Graph Neural Networks,
GNN, Temporal Graph Neural Networks,
message passing, node classification,
dynamic graph

Supervisor: Ing. Radek Mařík, CSc.

Abstrakt
Cílem této práce je poskytnout přehled

grafových neuronových sítí (GNN), které
jsou odvětvím neuronových sítí navrže-
ným pro práci s grafovými daty. Grafy
jsou obecnou datovou strukturou, která
může být použita k reprezentaci široké
škály komplexních domén, včetně soci-
álních sítí, interakcí molekul a znalost-
ních grafů. Grafové neuronové sítě pře-
konaly výsledky tradičních metod strojo-
vého učení a ručně vytvářených heuristik
na mnoha sadách grafových dat.

Donedávna byly grafové neuronové sítě
aplikovány především na statické grafy.
Nicméně mnoho reálných aplikací zahr-
nuje dynamické grafy, kde se základní
struktura grafu mění v čase. Rozšíření
grafových neuronových sítí na dynamické
grafy se ukázalo jako náročný úkol. I
přesto však temporální varianty grafových
neuronových sítí ukázaly slibné výsledky
na reálných grafových sadách data. Tato
práce shrnuje a popisuje statické i tempo-
rální grafových neuronové sítě.

Byly provedeny experimenty se static-
kými i dynamickými grafy, včetně jejich
vyhodnocení. Grafové neuronové sítě byly
použity na novou úlohu klasifikace hiero-
glyfů a překonaly výsledky dříve používa-
ných metod.

Klíčová slova: Grafové neuronové sítě,
GNN, Temporální grafové neuronové sítě,
předávání zpráv, klasifikace uzlů,
dynamický graf

vi

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Structure . 1
2 Graph Neural Networks Review 3
2.1 Terminology 3
2.2 Learning tasks 3
2.3 Inductive and Transductive

learning . 4
2.4 Weisfeiler-Lehman (WL) graph

isomorphism test 4
2.5 Representation learning 5
2.6 Graph Convolutional Networks . . 6
2.7 Message Passing Graph Neural

Networks . 7
2.7.1 Attention layers 8
2.7.2 Graph Isomorphism Network 10

2.8 Dataset sampling 11
2.8.1 Oversmoothing 11

3 Temporal Graph Neural
Networks Review 13
3.1 Introduction 13

3.1.1 Definitions 13
3.1.2 Temporal learning tasks 13

3.2 Discrete-time dynamic graphs . . 14
3.3 Continuous-time dynamic graphs 14

3.3.1 Temporal Message Passing . . 15
3.3.2 Temporal Graph Attention

layer . 16
4 Implementation Details 17

5 Proposed Method and
Assesment 21
5.1 Static graphs 21

5.1.1 Dataset 21
5.1.2 Baseline models 24
5.1.3 Proposed models 24

5.2 Dynamic graphs 27
5.2.1 Dataset 27
5.2.2 Baseline models 28
5.2.3 Selected temporal models . . . 29

6 Experiments 31
6.1 Static graphs 31

6.1.1 Hyperparameters 31
6.1.2 Results 32

6.2 Dynamic graphs 34
6.2.1 Hyperparameters 34

6.2.2 Results 35
7 Future Work 37

8 Conclusion 39

A Used Software 41

B Attachments 43

C Bibliography 45

vii

Figures
2.1 Weisfeiler-Lehman isomorphism

test (N. T. Huang and Villar,
2021) . 4

2.2 BFS and DFS search strategies
from node u with walk length
3 (Grover and Leskovec, 2016). . 5

2.3 Computational graph of message
passing. Input graph in the upper
left corner and message passing
from node 𝐴 on the right (P. Li
and Leskovec, 2022). 8

2.4 Graph Attention Network with
multi-head attention (3
heads) (Veličković et al., 2018). . 9

2.5 2 graphs with one-hot encoded
features will map to the same
embedding vector when using
GCN (Leskovec, 2022). 10

2.6 Sampling neighborhoods in
GraphSAGE (Hamilton et al.,
2018), 𝑘 is the number of layers. 12

2.7 Neighborhood composition of
GNN vs ShaDow across different
datasets (Zeng et al., 2021). . . . 12

3.1 Illustration of the Temporal
Graph Network architecture with
an optional decoder for edge
predictions (E. Rossi et al.,
2020). 16

4.1 Example of PyG’s Sequential
class . 18

5.1 Picture of one of the hieroglyphic
walls in Egypt. 21

5.2 Inputs to the model, hieroglyphic
text page and its graph
representation. 23

5.3 Diagrams of graph neural network
layer compositions. 26

6.1 Mean accuracy of used models. 32
6.2 Mean AUROC of used models . 33
6.3 Confusion matrix of the best

performing model on one of the
fold test sets. 33

6.4 An example of a wrong hieroglyph
classification. 34

6.5 Test NDCG@10 on tgbn-arxiv
across batch sizes. 36

viii

Tables
5.1 Hieroglyphs graph dataset

statistics. 22
5.2 Dataset statistics of tgbn-trade. 28
5.3 Dataset statistics of ogbn-arxiv

after conversion to a temporal
dataset. 28

6.1 Mean accuracy with changed
train/test ratio. 33

6.2 Comparisons of model results on
the tgbn-trade dataset. 35

6.3 Comparison of model results on
the ogbn-arxiv dataset and its
dynamic equivalent. Strongest
temporal model results are
underlined. 36

ix

Chapter 1
Introduction

1.1 Motivation

Graphs are a ubiquitous data structure. Many real-world systems can be
modeled as graphs, for example, computer networks, social networks, trans-
portation networks, and others. Graphs have been extensively researched in
mathematics, but up until recently, they have not been the main focus of the
machine learning community.

This thesis aims to provide an overview of Graph Neural Networks (GNNs),
a class of neural networks designed to work with graph data. Graph neural
networks have been successfully used in areas such as recommendation systems,
knowledge graphs, network analysis (to forecast future states), chemistry
(predicting molecule structure), code analysis, and others (Wu et al., 2022).

Due to the interconnected nature of graph data, computations in GNNs
require more care than traditional machine learning methods when scaling to
large datasets. Efficient sampling methods for scaling GNNs to graphs with
tens of millions of nodes were discovered in recent years and are discussed in
the text as well.

Although analysis of static graphs can provide valuable insights, graphs in
many areas are changing in time and are thus dynamic by nature. Variants of
graph neural networks, called temporal graph neural networks, were proposed
to handle dynamic graphs. The thesis will discuss selected significant state-
of-the-art temporal graph neural networks and compare them to static graph
neural networks.

1.2 Structure

Structure of the thesis is provided below, to facilitate easier navigation for
the readers. In Chapter 2 the general concepts and terminology of graphs
and learning methods are introduced. Following them is the review of static
graph neural networks. Dynamic graphs, along with corresponding temporal
graph neural networks are introduced in Chapter 3. Chapter 4 discusses
the available tools for implementations of graph neural networks. Design of
the experiments and details about used datasets and methods are provided

1

1. Introduction
in Chapter 5. In Chapter 6 the results of the experiments are presented and
discussed.

Last two chapters are dedicated to considerations of future work, in Chap-
ter 7, and overall conclusion of the thesis in Chapter 8.

2

Chapter 2
Graph Neural Networks Review

The definitions in the following sections are derived from the book (Wu et al.,
2022).

2.1 Terminology

Definition 2.1 (Graph). Graph 𝐺 = (𝑉 , 𝐸, 𝑋, 𝑋𝑒), where 𝑉 is the set of
nodes, 𝐸 is a set of edges, 𝑋 is an optional node feature matrix 𝑋 ∈ ℝ|𝑉 |×𝑑,
where 𝑑 is the number of node features. An edge feature matrix is also
optionally included, denoted as 𝑋𝑒 ∈ ℝ|𝐸|×𝑑𝑒 , where 𝑑𝑒 is the number of edge
features.

An adjacency matrix of an undirected graph is a matrix 𝐴 ∈ ℝ|𝑉 |×|𝑉 | such
that 𝐴𝑖𝑗 = 1 if there is an edge between nodes 𝑖 and 𝑗, and 0 otherwise. Node
degree 𝑑𝑖 is the number of edges incident to node 𝑖.

2.2 Learning tasks

The most commonly used tasks in graph learning are described below.
Definition 2.2 (Node classification). Given a graph 𝐺 with a set of nodes 𝑉,
node classification is a function

𝑓𝑁𝐶 ∶ 𝑉 → 𝐶

that maps nodes to a set of possible node classes 𝐶.
Definition 2.3 (Edge prediction (link prediction)). Given a graph 𝐺 with a
set of nodes 𝑉, edge prediction (link prediction) is a function

𝑓𝐸𝑃 ∶ 𝑉 × 𝑉 → [0, 1]

that predicts a probability that an edge between two nodes exists.
Definition 2.4 (Graph classification). Given a graph 𝐺, graph classification
is a function

𝑓𝐺𝐶 ∶ 𝐺 → 𝐶

that maps a graph one of the classes in set 𝐶.

3

2. Graph Neural Networks Review..............................

Figure 2.1: Weisfeiler-Lehman isomorphism test (N. T. Huang and Villar, 2021)

Other common tasks in graph learning include community detection, graph
generation, or graph matching, but the previously defined tasks are the most
common for the area of this thesis.

2.3 Inductive and Transductive learning

In a transductive setting, a graph neural network can only make predictions
on already seen data (A. Rossi et al., 2018). The test set is known, and nodes
can be used for message passing (without using labels) during training. On
the other hand, an inductive setting means the test set is not known during
training, for example we mask some nodes of a graph, or predict on an unseen
graph.

The choice of learning strategy depends on the specific dataset. Since
transductive learning can access all features and complete graph structure, it
can improve test set accuracy. Usually, however, inductive learning is more
practical, since the test set is not always known and is more scalable, because
it does not require retraining models each time a graph structure changes,
unlike in the transductive setting.

2.4 Weisfeiler-Lehman (WL) graph isomorphism
test

Weisfeiler-Lehman test is a powerful method to differentiate non-isomorphic
graphs. It is analogous to message passing in graph neural networks (K. Xu
et al., 2019).

Weisfeiler-Lehman isomorphism test starts with a single label for all nodes.
Then, local neighborhoods are sampled and aggregated for each node, and
a unique label is created using a hash function. The algorithm stops once
there are no changes in labels between iterations. The complete algorithm is
shown in Figure 2.1.

It was shown that message passing GNNs are at most equally expressive as
the WL test. Therefore, topologically, message passing can only distinguish

4

................................. 2.5. Representation learning

Figure 2.2: BFS and DFS search strategies from node u with walk length
3 (Grover and Leskovec, 2016).

the same structures as the WL test. This seems to be an issue only for
datasets where node features are not crucial, and the model needs to learn
mainly from the graph structure (K. Xu et al., 2019). Since most datasets
rely on node feature information, this fact is relevant only for a subset of
graph classification tasks, which need topological information.

2.5 Representation learning

High-quality features can have a significant impact on the performance of all
machine learning models. For many real-world datasets, node (edge, graph)
features can be extracted using application specific methods. For example, in
citation networks, initial node features represent word embeddings of each
paper’s abstracts. Other areas relied on hand-crafted features specific for
each individual dataset, such as node degrees, clustering coefficients, shortest-
path lengths, and others. Universal algorithms for feature extraction can
nevertheless provide a strong baseline.

Node2vec (Grover and Leskovec, 2016) is a popular unsupervised algorithm
for learning node embeddings, which can be used as initial features for graph
neural networks. Inspired by word2vec, it learns embeddings of nodes using
the observation that nodes with similar neighborhoods should have similar
embeddings.

Node2vec uses the concept of random graph walks. A random walk is
a sequence of nodes where each next node is chosen randomly from the
set of neighboring nodes. Node2vec then improves the idea by introducing
two parameters, 𝑝 and 𝑞, which control the probability of returning to the
previous node or moving to a node further away. This allows the algorithm to
explore both local and global neighborhoods. By changing the 𝑝, 𝑞 parameters,
node2vec effectively simulates local DFS or BFS search.

5

2. Graph Neural Networks Review..............................
2.6 Graph Convolutional Networks

Based on their success in computer vision, (T. N. Kipf and Welling, 2017)
have proposed a generalization of convolutional neural networks for the graph
domain. Convolutions on images typically use a fixed grid mask, which
cannot be applied to graphs, since the number of neighbors of each node can
vary. The ordering of nodes in a graph is also arbitrary, which means that a
permutation invariant function is needed.
Definition 2.5 (Permutation invariance). Permutation invariant function is a
function 𝑓 ∶ ℝ|𝑉 |×|𝑉 | × ℝ|𝑉 |×𝑚 → ℝ|𝑉 |×𝑑, that satisfies

𝑓(𝐴, 𝑋) = 𝑓(𝑃𝐴𝑃 𝑇, 𝑃𝑋)

for any permutation 𝑃 (Leskovec, 2022).
Permutation invariant functions are required for graph-level tasks. In case

of a node-level task, the function needs to be permutation equivariant, that
is the output changes with the permutation of the input.
Definition 2.6 (Permutation equivariance). Permutation equivariant function
is a function 𝑓 ∶ ℝ|𝑉 |×|𝑉 | × ℝ|𝑉 |×𝑚 → ℝ|𝑉 |×𝑑, that satisfies

𝑃𝑓(𝐴, 𝑋) = 𝑓(𝑃𝐴𝑃 𝑇, 𝑃𝑋)

for any permutation 𝑃 (Leskovec, 2022).
Graph Convolutional Networks (GCN) (T. N. Kipf and Welling, 2017) use

the following propagation rule:

𝐻(𝑙+1) = 𝜎(𝐷̂− 1
2 ̂𝐴𝐷̂− 1

2 𝐻(𝑙)𝑊 (𝑙)) (2.1)

where:. ̂𝐴 is an adjacency matrix of the graph with added self-connections,. 𝐷̂ is a degree matrix of ̂𝐴 and (𝐷̂− 1
2)

2
= 𝐷̂−1,. 𝜎 is a non-linear activation function.𝐻 is a matrix of embeddings, 𝑊 is a trainable weight matrix

A common example of a non-linear activation function is ReLU, defined by
the following equation: ReLU(𝑥) = max(0, 𝑥). Graph Convolutional Networks
suffer from the fact that the trained model directly depends on a specific
graph structure and, therefore, cannot be applied to a different graph. This
limits the usage only to transductive tasks, which is very limiting. The
propagation rule also relies on constructing full matrices, which is infeasible
for most real-world datasets. However, the idea of convolutions on a graph
was a strong inspiration for the message passing framework, which is the
basis of most graph neural networks.

6

......................... 2.7. Message Passing Graph Neural Networks

2.7 Message Passing Graph Neural Networks

Message passing is a general framework for information flow between nodes
of a graph. It generally consists of three phases:.Message computation.Aggregation. Update

Message computation is usually omitted as it corresponds to loading the
node features. The general message passing equation for a graph neural
network can be formulated as follows (Gilmer et al., 2017):

ℎ(𝑙+1)
𝑣 = 𝛾(𝑙) (ℎ(𝑙)

𝑣 , ∑
𝑢∈𝒩(𝑣)

𝑓 (𝑙) (ℎ(𝑙)
𝑢 , ℎ(𝑙)

𝑣 , 𝑒(𝑙)
𝑢,𝑣)) (2.2)

where:. ℎ(𝑙)
𝑣 represents node embedding of node 𝑣 at layer 𝑙,.𝒩(𝑣) denotes the neighborhood of node 𝑣,. 𝑒(𝑙)
𝑢,𝑣 represents edge features between nodes 𝑢 and 𝑣 at layer 𝑙,. 𝑓, 𝛾 are learnable functions (called aggregation and update respectively)

Different graph neural network layers can use a fixed function instead of
learnable aggregation and update functions. Likewise, not all layers need to
use edge features. The number of graph message passing layers is usually
denoted as the depth of a graph neural network.

We can look at Graph Convolutional Networks in Section 2.6 through the
lens of message passing. The propagation rule of GCN where 𝑑𝑖 is a degree
of node 𝑖 can be rewritten as (T. Kipf, 2016):

ℎ(𝑙+1)
𝑣 = 𝜎 (∑

𝑗∈𝑁(𝑣)

1
𝑑𝑢𝑑𝑣

ℎ(𝑙)
𝑣 𝑊 (𝑙) + 1

𝑑𝑣
ℎ(𝑙)𝑊 (𝑙))

In this case, aggregation is a weighted average of neighbor’s embeddings
and update function sums aggregated messages with the previous node
representation.

Another example of a message passing neural network is GraphSAGE (Hamil-
ton et al., 2018). An accomplishment of GraphSAGE is that it is possible
to train it in an inductive setting, hugely extending the area of possible
applications. GraphSAGE uses the idea of convolutions, but defines them
over fixed-size local node neighborhoods, which allows more efficient training.
It has the following message passing equation:

ℎ(𝑙)
𝑣 = 𝜎(𝑊 (𝑙) ⋅ CONCAT(ℎ𝑙−1

𝑣 , 𝐴𝐺𝐺𝑢∈𝑁(𝑣)(ℎ𝑙−1
𝑢))) (2.3)

where 𝐴𝐺𝐺 is an aggregation function, such as mean, and CONCAT
concatenates the vectors together.

7

2. Graph Neural Networks Review..............................

Figure 2.3: Computational graph of message passing. Input graph in the upper
left corner and message passing from node 𝐴 on the right (P. Li and Leskovec,
2022).

2.7.1 Attention layers

Attention mechanisms have achieved state-of-the-art performance in Natural
Language Processing (NLP). (Veličković et al., 2018) extended the idea of
self-attention to graphs and proposed the Graph Attention Network (GAT).
The main idea of attention in graphs is to learn different weights for each
node connection. This allows a more fine-grained control over the information
flow in the network, since we can assign different importance to closer nodes,
or nodes that are deemed more significant in the graph structure.

Computing the importance of node 𝑗 features for node 𝑖 is done using the
attention mechanism below (Veličković et al., 2018):

𝑒𝑖𝑗 = 𝑎 (𝑊ℎ𝑖, 𝑊ℎ𝑗) (2.4)

𝑎 is a one-layer feed-forward neural network in the author’s experiments,
thus the complete attention mechanism is:

𝑒𝑖𝑗 = LeakyReLU(𝑎𝑇 [𝑊ℎ𝑖||𝑊ℎ𝑗]) (2.5)

And the message passing layer is:

ℎ′
𝑖 = 𝜎 (∑

𝑗∈𝒩(𝑖)
𝛼𝑖𝑗 ⋅ 𝑊ℎ𝑗) (2.6)

Where 𝛼𝑖𝑗 = softmax(𝑒𝑖𝑗) is the normalized attention coefficient and
LeakyReLU is the following function

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) + negative_slope ⋅ min(0, 𝑥)

The original graph attention layer uses negative_slope = 0.2. Operation ||
in Equation 2.5 represents concatenation of vectors. Masked attention has a

8

......................... 2.7. Message Passing Graph Neural Networks

Figure 2.4: Graph Attention Network with multi-head attention (3
heads) (Veličković et al., 2018).

natural correspondence in graphs, as we compute the attention coefficients
only for direct neighbors of a target node.

The authors have found that using multi-head attention is beneficial,
similar to (Vaswani et al., 2023). Using multiple weight matrices (heads)
and combining them leads to smoother learning (Veličković et al., 2018).
Combination of multiple heads can be done by concatenation or averaging
across all heads. Therefore, the final equation for the attention layer is:

ℎ′

𝑖 = 𝜎 (1
𝐾

𝐾
∑
𝑘=1

∑
𝑗∈𝒩𝑖

𝛼𝐾
𝑖𝑗𝑊 𝑘ℎ𝑗) (2.7)

In the final layer, vectors don’t need to be concatenated, but a different
pooling function can be used, such as an average between all attention heads
like Equation 2.7.

In (Brody et al., 2022), the authors have noticed a limitation of the original
formulation of GAT (Veličković et al., 2018). The non-linear activation
function (LeakyReLU in this case) is applied immediately after calculating
the attention. They have shown that it leads to a collapse of linearities in 𝑊
and 𝑎 in Equation 2.5 to a single linear layer and proposed a fix by changing
the order of operations to (Brody et al., 2022):

𝑒𝑖𝑗 = 𝑎𝑇(LeakyReLU (𝑊 ⋅ [ℎ𝑖||ℎ𝑗])) (2.8)

which separates the two layers by a nonlinearity and thus potentially
increases the capabilities of the model.

9

2. Graph Neural Networks Review..............................

Figure 2.5: 2 graphs with one-hot encoded features will map to the same
embedding vector when using GCN (Leskovec, 2022).

2.7.2 Graph Isomorphism Network

So far, in this chapter, only graph neural networks that mainly use features and
edge weights to pass information between nodes were examined. Some tasks,
however, require a deeper understanding of the graph structure itself. During
message passing, computational graphs, which are shown in Figure 2.3, are
being mapped to an embedding space (usually ℝ𝑑 for some positive integer 𝑑)
using message passing layers (Leskovec, 2022). If this mapping is not injective,
some computational graphs will be mapped to the same embedding vector.
Therefore, ideally a graph neural network layer should be injective in this
sense, as it could distinguish between different computational graphs. A layer
is more expressive, if it can distinguish between more classes of graphs.

For example, given two graphs, with 2 and 4 nodes respectively, a Graph
Convolutional Network will map both of the graphs in Figure 2.5 to the same
embedding vector, despite the fact that they are different graphs, which hints
at a low expressive power of the GCN. Graph Isomorphism Network (GIN) (K.
Xu et al., 2019) is a graph neural network designed to be as expressive as the
Weisfeiler-Lehman (WL) test, which was described in Figure 2.1.

The GIN layer is defined as follows:

ℎ(𝑘)
𝑣 = MLP(𝑘) ((1 + 𝜖(𝑘)) ⋅ ℎ(𝑘−1)

𝑣 + ∑
𝑢∈𝑁(𝑣)

ℎ(𝑘−1)
𝑢)

Where 𝜖(𝑘) is a trainable parameter, or a fixed scalar, and MLP(𝑘) is a
feed-forward neural network (K. Xu et al., 2019).

Using an expressive layer, such as GIN, is not required in many cases, as
most datasets contain strong features, some of which can be topologically
substantial. Graph Isomorphism Network is ideally suited for graphs with
absent, or weak features where learning the topological structure is required
to achieve sound performance.

10

.................................... 2.8. Dataset sampling

2.8 Dataset sampling

Scalability of graph neural networks is one of the largest challenges of the
field. In traditional machine learning, we can randomly split the dataset
into mini-batches. In GNNs, due to message passing, embeddings of nodes
depend on their neighbors, and the number of dependent nodes grows with
each layer. This problem is called neighborhood explosion. Small graphs can
be processed in a full-batch fashion, but most real-world datasets cannot be
used this way.

If it is the case that the dataset is formed by many independent graphs,
to increase training efficiency, multiple graphs can be stacked into a single
graph. This works by diagonally stacking adjacency matrices. Since there
are no edges across input graphs, message passing continues to function as
intended, and no information is leaked across graphs (Fey and Lenssen, 2024).
Adjacency matrix is generally implemented using sparse matrices, therefore
no additional memory constraints are imposed by this operation.

Given adjacency matrices A1, … , A𝑛 and feature matrices X1, … , X𝑛, the
stacked graph A is:

A = ⎡⎢
⎣

A1
⋱

A𝑛

⎤⎥
⎦

, X = ⎡⎢
⎣

X1
⋮

X𝑛

⎤⎥
⎦

,

To combat the issue of neighborhood explosion, in GraphSAGE (Hamilton
et al., 2018), the authors have proposed the idea of sampling the neighborhood,
instead of using all neighbors. At each layer, only a fixed amount of nodes is
expanded, which is shown in Figure 2.6. Neighborhood sampling is a trade-off
between memory efficiency and information loss. Since not all neighbors of a
node are gathered for message passing, some information is necessarily lost
in the process.

Cluster-GCN (Chiang et al., 2019) advances the idea of neighborhood
sampling introduced by GraphSAGE. They noticed the importance of using
limited neighborhoods, but instead of random sampling, they propose first
clustering the graph, and then use clusters as mini-batches. This yields
high reuse of calculation within a mini-batch, because neighbors within
the batch are common and eliminates the risk of neighborhood expansion
problem. Despite improving the sampling efficiency, it introduces the need
for a clustering algorithm, which can slow down the training pipeline and
possibly introduce additional hyperparameters.

2.8.1 Oversmoothing

Oversmoothing is an issue that occurs during the training of graph neural
networks. If a trained graph neural network has many layers (the exact
number depends on the specific dataset), message passing will cause each
node to get information from far away nodes. Thus, since messages are

11

2. Graph Neural Networks Review..............................

Figure 2.6: Sampling neighborhoods in GraphSAGE (Hamilton et al., 2018), 𝑘
is the number of layers.

Figure 2.7: Neighborhood composition of GNN vs ShaDow across different
datasets (Zeng et al., 2021).

propagated for all nodes, node features can converge to a similar area in the
embedding space, despite being fundamentally different.

ShaDow-GNN (Zeng et al., 2021) approaches the issue of oversmoothing
by extracting a neighborhood subgraph 𝐺𝑣 and using a graph neural network
directly on this subgraph. It allows a design of a GNN with more layers than
the depth of 𝐺𝑣 (distance of the farthest node from the center node) without
gathering messages from nodes far away. This leads to a local oversmoothing
on 𝐺𝑣, which can be beneficial, as it corresponds to the extraction of higher-
level features.

Figure 2.7 shows the neighborhood composition of a traditional GNN and
ShaDow-GNN. Neighborhood composition is the number of nodes sampled at
various distances from the current node. Because of neighborhood explosion,
most of the nodes sampled during regular GNN training are four hops away, as
that is the number of GNN layers used. ShaDow on the other hand, samples
mainly close neighbors, and thus supports strong local message exchange,
which is beneficial if it is assumed that the graph structure contains useful
information.

12

Chapter 3
Temporal Graph Neural Networks Review

3.1 Introduction

The majority of graph machine learning algorithms focus on static graphs.
Real data, however, is in many cases dynamic. Examples include social
networks, where the network graph is continuously updated with new inter-
actions by users, computer networks, which collect information in real-time
and others. In areas such as citation graphs, value lies in seeing the research
trends, and their evolution throughout time. Historical information can also
be useful in predicting future relations, therefore the study of temporal graph
neural networks is of great importance.

Fundamentally, there are two ways to define dynamic graphs. Discrete-time
dynamic graphs (DTDG) are sequences of static graphs, while the more
general Continuous-time dynamic graphs (CTDG) represent a graph as a
sequence of addition and deletion events of nodes and edges.

Depending on the specific subfield, certain authors may prefer to use the
term dynamic over temporal. For clarity, the terms dynamic graph and
temporal graph neural network are preferred in this work. They can be,
however, used interchangeably and can be used as such in this thesis.

3.1.1 Definitions

Definition 3.1 (Discrete-time dynamic graphs (DTDG)). A discrete-time
dynamic graph is a sequence of static graphs Theorem 2.1, called snapshots
in this context, 𝐺 = [𝐺1, 𝐺2, 𝐺3, … 𝐺𝑛], where 𝑛 is the number of distinct
timestamps.
Definition 3.2 (Continuous-time dynamic graph (CTDG)). A sequence of
time-stamped events (interactions) 𝐺 = {𝑥(𝑡1), 𝑥(𝑡2), … 𝑥(𝜏)}, where 𝑥(𝑡𝑖)
represent an addition, deletion of a node (node event) or a directed edge
(edge event), or a feature change at time 𝑡𝑖 (E. Rossi et al., 2020).

3.1.2 Temporal learning tasks

Definition 3.3 (Temporal node classification). Given a dynamic graph 𝐺 with
a set of nodes 𝑉, the temporal node classification task consists of learning a

13

3. Temporal Graph Neural Networks Review
function 𝑓𝑇 𝑁𝐶:

𝑓𝑇 𝑁𝐶 ∶ 𝑉 × ℝ+ → 𝐶

which maps a node to a set of possible node classes 𝐶 at time 𝑡 ∈ ℝ+ (Longa
et al., 2023).
Definition 3.4 (Temporal link prediction). Given a dynamic graph 𝐺 with
a set of nodes 𝑉, the temporal link prediction task consists of learning a
function 𝑓𝑇 𝐿𝑃:

𝑓𝑇 𝐿𝑃 ∶ 𝑉 × 𝑉 × ℝ+ → [0, 1]

which predicts a probability of an edge existing between two nodes at time
𝑡 ∈ ℝ+ (Longa et al., 2023).

3.2 Discrete-time dynamic graphs

Generally, discrete-time dynamic graph problems can be solved using a
combination of a classic graph neural network to model relations within each
static graph and a sequence model to model features evolving over time.

More formally, sequence models, given an input a sequence of observa-
tions {𝑥(1), 𝑥(2), … , 𝑥(𝜏)} where 𝑥(𝑡) ∈ ℝ𝑑 for all 𝑡 ∈ {1, … , 𝜏}, produce output
hidden representations {ℎ(1), ℎ(2), … , ℎ(𝜏)} where ℎ(𝑡) ∈ ℝ𝑑′ for all times-
tamps 𝑡 ∈ {1, … , 𝜏}. Here, 𝜏 represents the length of the sequence or the
timestamp for the last element in the sequence (Kazemi, 2022).

The hidden representation ℎ(𝑡) is computed by the following equation:

ℎ(𝑡) = RNN(𝑥(𝑡), ℎ(𝑡−1)) (3.1)

where RNN is a specific sequence model.
One of the simplest ways to model dynamic graphs is to combine a recurrent

neural network and a graph neural network.
Given a DTDG with a sequence of graph snapshots [𝐺(1), … , 𝐺(𝜏)], a GNN

is applied to each graph snapshot, resulting in a sequence of embeddings
[𝑍(1), 𝑍(2), … , 𝑍(𝜏)], which is then applied as an input to an RNN Equation 3.1,
that produces the final embeddings (Kazemi, 2022).

In ROLAND (You et al., 2022), the authors proposed an altered update
method, which uses not only embeddings produced by the final layer of a
GNN, but all the representations gathered in the intermediate layers of a
GNN. The produced embeddings thus directly depend on the last layer as
well as on the embedding in the last timestamp. The algorithm is shown in
Algorithm 1.

3.3 Continuous-time dynamic graphs

Definition 3.5 (Temporal neighborhood). Temporal neighborhood of node 𝑖
at time interval 𝑇 is a set of nodes 𝑁𝑖(𝑇) = {𝑗 ∶ (𝑖, 𝑗) ∈ 𝐸(𝑇)} where 𝐸(𝑇)
are (directed) temporal edges that exist at time interval 𝑇 (E. Rossi et al.,
2020).

14

............................. 3.3. Continuous-time dynamic graphs

Algorithm 1 ROLAND(You et al., 2022)
Input: Dynamic graph snapshot 𝐺𝑡, hierarchical node state 𝐻𝑡−1
Output: Node state 𝐻𝑡

1: 𝐻(0)
𝑡 ← 𝑋𝑡

2: for 𝑙 = 1, … , 𝐿 do
3: 𝐻(𝑙)

𝑡 = GNN(𝑙)(𝐺𝑡, 𝐻(𝑙−1)
𝑡)

4: 𝐻(𝑙)
𝑡 = Update(𝑙)(𝐻(𝑙−1)

𝑡 , 𝐻(𝑙)
𝑡)

5: end for

3.3.1 Temporal Message Passing

The message passing schema can be extended to dynamic graphs by using the
notion of the temporal neighborhood. First, messages are created by nodes
that were part of an interaction.

Because Theorem 3.2 uses directed edges, there will be two messages in
case of an edge event. Messages are computed using a learnable message
function 𝑚𝑠𝑔 for the source node and target node, respectively (E. Rossi
et al., 2020):

ℎ̂(𝑡)
𝑖 = msg(ℎ(𝑡−1)

𝑖 , ℎ(𝑡−1)
𝑗 , Δ𝑡, 𝑒𝑖𝑗(𝑡)) (3.2)

ℎ̂(𝑡)
𝑗 = msg(ℎ(𝑡−1)

𝑗 , ℎ(𝑡−1)
𝑖 , Δ𝑡, 𝑒𝑖𝑗(𝑡)) (3.3)

In case of a node event 𝑣𝑖(𝑡), only a single message is computed for the
involved nodes (E. Rossi et al., 2020):

ℎ̂(𝑡)
𝑖 = msg(ℎ(𝑡−1)

𝑖 , 𝑡, 𝑣(𝑡)
𝑖) (3.4)

The previous equations generate only the so-called memory embedding of
a node. To get the actual temporal embedding 𝑧𝑖(𝑡) of node 𝑖 at time 𝑡, an
embedding module is used, which aggregates messages directly from all its
temporal neighbors (E. Rossi et al., 2020):

𝑧(𝑡)
𝑖 = ∑

𝑗∈𝑁𝑘
𝑖 (𝑡)

𝜙(ℎ(𝑡)
𝑖 , ℎ(𝑡)

𝑗 , 𝑒𝑖𝑗, 𝑣(𝑡)
𝑖 , 𝑣(𝑡)

𝑗) (3.5)

where 𝜙 is a learnable function, 𝑁𝑘
𝑖 (𝑡) is the k-hop temporal neighborhood

of node 𝑖 at time 𝑡, 𝑣(𝑡)
𝑖 is the feature of node 𝑖 at time 𝑡 and 𝑒𝑖𝑗 is the edge

feature between nodes 𝑖 and 𝑗. 𝑧(𝑡)
𝑖 is the final temporal embedding, which

can be combined with a learnable time encoding to signify importance of the
most recent interactions.

Equation 3.5 can be seen as a generalization of the message passing equation
in Equation 2.2 to dynamic graphs.

In Temporal Graph Networks (TGN) (E. Rossi et al., 2020), the authors use
a recurrent neural network, specifically a GRU, to calculate current memory
state of each node, by combining the previous state and the received message.
They experiment with different embedding modules to produce the final

15

3. Temporal Graph Neural Networks Review

Figure 3.1: Illustration of the Temporal Graph Network architecture with an
optional decoder for edge predictions (E. Rossi et al., 2020).

temporal embedding, and discover that using graph attention layers achieves
best results (E. Rossi et al., 2020).

To achieve faster training, in TGN the authors use batches of events
(interactions). Multiple events involving a single node or an edge can occur in
a single batch. An aggregation (agg) module is thus used to combine multiple
messages into one. The process is shown in Figure 3.1. In experiments, they
found that averaging messages of events performs better than using only the
last event, but incurs a higher computation cost.

3.3.2 Temporal Graph Attention layer

In TGAT (D. Xu et al., 2020), the authors extend the graph attention
layer from static to dynamic graphs by combining temporal neighborhood
information with time embedding for the source node.

For the time embedding, the important factor is relative time distance,
not absolute time. It can thus be calculated using a difference between a
source node and its neighbors, for example, given node embeddings of source
node ℎ0 at time 𝑡 and layer (𝑙 − 1), and neighbor embeddings

{ℎ̃(𝑙−1)
1 (𝑡1), … , ℎ̃(𝑙−1)

𝑁 (𝑡𝑁)}

the time embedding will be calculated using a (learnable) function with inputs

{𝑡 − 𝑡1, … , 𝑡 − 𝑡𝑁}

that represent the time difference between the source node timestamp and
the last interaction timestamp of its neighbors. The time embedding is then
combined with node embeddings to produce an input to the attention layer.
To incorporate edge features, in TGAT the authors concatenate edge features
with node embeddings and time embeddings.

16

Chapter 4
Implementation Details

To implement code for the experiments, Python was used, along with popular
machine learning libraries.

Pytorch and Pytorch Lightning

Pytorch (Ansel et al., 2024) was used as the main deep learning backend,
which provides basic building blocks for neural networks, such as activation
functions, linear layers and optimizers.

To streamline the training process, for static models (Pytorch) Light-
ning (Falcon and The PyTorch Lightning team, 2019) was used. It is a layer
on top of Pytorch, which emphasizes modular architecture, while providing
additional features such as logging, checkpointing models, and callbacks such
as learning rate schedulers and early stopping. It makes it manageable to
write code that runs on multiple hardware backends without any changes.

All models are wrapped in a LightningModule class, equivalently the
datasets are wrapped in a LightningDataModule class. This allows easy
integration with Lightning’s Trainer class, which handles the training loop.
It is important to note that at any point, the layers of abstraction of the
Lightning library can be overridden and Pytorch can be used directly.

Furthermore, accompanying LightningCLI was used to run experiments.
When used with other Lightning modules, it allows for straight-forward config-
uration of arguments from a command line, or through a YAML configuration
file. An example of such configuration is shown in Listing 4.1.

Listing 4.1: Example of a Lightning YAML configuration file
data :

root : / Datasets /OGB/
batch_size : 8192

model :
class_path : s r c . models . gcn .GCN
in i t_args :

hidden_channels : 256
num_layers : 3
dropout : 0 .5
norm : graph

17

4. Implementation Details
Pytorch Geometric

To implement graph neural networks, Pytorch Geometric (PyG) (Fey and
Lenssen, 2019), was used. PyG provides abstractions on top of Pytorch, which
can be used to create specific graph layers and utilities. It comes with a variety
of implemented graph convolutional layers, data loaders, graph transforms
and aggregation operators among others. PyG tries to use sparse tensors as
much as possible to reduce memory footprint in comparison to using dense
tensors, thus making it possible to process larger graphs. Some quality-of-life
improvements for graphs include the ability to define complicated model
structures with residual connections, or different layer inputs using PyG’s
Sequential class, showcased in Figure 4.1.

model = Sequential(
"x, edge_index, batch",
[

(GCNConv(num_features, 64), "x, edge_index -> x1"),
ReLU(),
(GCNConv(64, 64), "x1, edge_index -> x2"),
ReLU(),
(lambda x1, x2: [x1, x2], "x1, x2 -> xs"),
(JumpingKnowledge("cat", 64, 2), "xs -> x"),
Linear(128, num_classes),

]
)

Figure 4.1: Example of PyG’s Sequential class

GraphGym

GraphGym (You et al., 2021) is a library designed to evaluate and compare
different configurations of GNN modules. It provides a modular design, which
makes it easy to run many experiments and perform grid search of selected
combinations of parameters. Although it is coupled with Pytorch Geometric
and promises to be easily extendable, I have found it cumbersome when
applying to custom datasets and using non-standard evaluation settings. For
example, splitting the datasets into multiple folds for cross-validation was not
possible by default. This led me to write my own training pipeline. However,
I recognize the usefulness of GraphGym when designing new layers, as those
can be well integrated, tested, and compared with other configurations on
the plethora of existing datasets.

18

.................................. 4. Implementation Details

NetworkX

NetworkX1 is a Python library used for network analysis and manipulation of
graphs of any kind. In this work, it has been used to load and preprocess input
graphs and to output graphs for further visualization. Written in Python,
its usage is limited to small graphs, due to the performance limitations.
Conversely, feature completeness provides a compelling argument for its usage
in light computational tasks. One of the issues I have found working with
NetworkX is that the conversion of a NetworkX graph to a Pytorch Geometric
graph requires all nodes and edges to have the exact same features. This
was a source of many hiccups during implementation. A workaround was to
delete incomplete features from the graph. Another way to solve this issue
would be to use a heterogeneous PyG graph.

Available benchmark datasets

Absence of high-quality datasets has been an issue in developing graph
neural networks. Many papers have used datasets such as Cora, CiteSeer
or PubMed (Yang et al., 2016) for benchmarking results. These datasets
only contain a few thousand nodes and tens of thousands of edges. However,
many real-world datasets contain millions of nodes and edges. This issue
has sparked interest and led to the development of Open Graph Benchmark
(OGB) (Hu, Fey, Zitnik, et al., 2021). OGB is a collection of datasets varying
in size, task type, and domain. To further improve the development of GNNs,
authors of OGB have since provided even larger datasets, the Large Scale
Graphs (OGB-LSC) (Hu, Fey, Ren, et al., 2021), which contain up to 240M
nodes and 1.7B edges and show that GNNs can be successfully used at this
scale (Hu, Fey, Ren, et al., 2021). After recognizing the same need for dynamic
graphs, similar efforts are being made in the Temporal Graph Benchmark
(TGB) (S. Huang et al., 2023).

Libraries for temporal graph neural networks

Although multiple well-established libraries exist for static graph neural
networks, the same cannot be said for temporal graph neural networks. How
to represent dynamic graphs to allow efficient sampling and training is still
an open question. Most temporal graph neural networks are implemented in
pure Pytorch, without using the latest advances in static GNN libraries. As
an example, to perform the experiments on dynamic graphs, I have used the
DyGLib-TGB (Yu, 2023), because it is the recommended repository by the
authors of TGB. Although an extension of PyG to temporal graph neural
networks, called Pytorch Geometric Temporal2 exists, the development has
been discontinued. Efforts are underway to add proper support for temporal
datasets and models in Pytorch Geometric, but as of version 2.5, it is still
in early stages. The lack of efficient tooling for temporal graphs is, in my

1https://networkx.org/
2https://pytorch-geometric-temporal.readthedocs.io/en/latest/

19

https://networkx.org/
https://pytorch-geometric-temporal.readthedocs.io/en/latest/

4. Implementation Details
opinion a significant obstacle in the development of temporal GNNs and
remains to be solved by future work.

Experiment tracking

Weights and Biases3 was used for logging and experiment tracking. It is
well integrated with Lightning and can be used to track hyperparameters,
metrics during training and even store artifacts of models and datasets. Many
visualizations are readily available, with options to export data to perform
local analysis.

3https://wandb.ai

20

https://wandb.ai

Chapter 5
Proposed Method and Assesment

This chapter will discuss the proposed solution for the tasks of node classifi-
cation on static and dynamic graphs. Section 5.1 will describe the proposed
algorithms for static node classification, while Section 5.2 will discuss the
designs for temporal node classification.

5.1 Static graphs

5.1.1 Dataset

To evaluate performance of classical graph neural networks, a dataset of
multiple static graphs was chosen. Each graph in this dataset represents a
wall inscribed with an ancient hieroglyphic text.

Figure 5.1: Picture of one of the hieroglyphic walls in Egypt.

The hieroglyph text is transformed into a facsimile, a digital re-drawing of

21

5. Proposed Method and Assesment.............................
the glyphs. The facsimiles were then processed by a segmentation algorithm
and several correction steps to create a graph representation. The exact
algorithms and methods are described in detail in (Mařík et al., 2024).

The nodes represent individual hieroglyphs, as either centers of glyphs, or
touch points, the closest points between two glyphs. The task is to classify if
a node in the graph is a part of a hieroglyph, or not. Accurate predictions
would help to reconstruct the reading sequence of hieroglyphs, which is crucial
for end-to-end translation. Part of an input graph is visualized in Figure 5.2b.
The learning task is an inductive node classification, because the model is
evaluated on unseen graphs.

Dataset statistics

The dataset consists of 7 graphs, with an average of 18995 nodes and 24186.14
edges directed edges. The label ratio is skewed towards negative labels, with
an average number of 31.8% positive labels (hieroglyph nodes) in each graph.
The exact statistics are shown in Table 5.1.

Table 5.1: Hieroglyphs graph dataset statistics.

Graph # Nodes # Edges Percentage of Positive Labels

1 19836 25419 53%
2 26891 34392 27%
3 29608 37879 28%
4 6191 7929 39%
5 9429 12003 30%
6 21987 27929 24%
7 19023 23752 22%

Preprocessing

Dataset is ingested from json files, which contain information about center
points of glyphs, touch points and edge data, along with a gml file which
represents the graph structure. The input dataset contains labels, which
specify a node class, which can be one of parts of hieroglyph symbol, vertical
or horizontal stripe (delimiter) or other insignificant glyph. Since the goal
is to classify if a node is a part of a hieroglyph, labels were converted to be
either 0 or 1, where 1 represents a part of a hieroglyph, therefore making the
classification task binary. Features and graph structure were then combined
to create a complete graph dataset.

Edge features

Aside from node features, many graph neural networks can directly use
(multidimensional) edge features during message passing. The dataset includes
edge features, which could be used during training, however not all edge

22

...................................... 5.1. Static graphs

(a) : Image of a labeled facsimile of hieroglyphic text, with green glyphs representing
hieroglyphs.

(b) : Graph representation of Figure 5.2a. Green nodes are parts of hieroglyphs.
Visualization created using Gephia.

ahttps://gephi.org/

Figure 5.2: Inputs to the model, hieroglyphic text page and its graph represen-
tation.

23

https://gephi.org/

5. Proposed Method and Assesment.............................
features are present for all edges. This presents an implementation problem,
since PyTorch Geometric requires all edges and nodes to have the exact same
number of features. Filling in such missing features with zeros was considered,
but was found to slow down training, without providing any benefits. Other
approach to solve this issue would be rethinking the underlying graph data
representation and using a heterogeneous graph, along with a heterogeneous
graph neural network, but such experiments were outside the scope of this
thesis.

5.1.2 Baseline models

To compare the effects of providing models with graph structure information,
a baseline Multilayer Perceptron (MLP) was used. Multilayer perceptron is a
neural network consisting of fully connected (linear) layers, with a non-linear
activation function, such as ReLU, applied between linear layers.

As a second baseline model, a Graph Convolutional Network (GCN), defined
in Section 2.6, was used. Comparisons with the GCN should provide insights
into whether more complicated models are necessary, or if using the graph
structure yields the most significant improvement. The task is inductive in
terms of seeing new graphs during testing, therefore GCN can be used.

5.1.3 Proposed models

Because the dataset has different types of nodes (centers, touch points and
separators), edges between nodes should not be equally important. This
proposition would be confirmed by performance difference between a baseline
GCN, which uses a constant coefficient for all edges, and a more complicated
model, such as GAT, which can learn weights for edges.

Graph Attention Networks, described in Subsection 2.7.1, have been shown
to outperform GCNs on many tasks, therefore models using attention layers
were tested. Because (Brody et al., 2022) have shown that the original atten-
tion layer design proposed in (Veličković et al., 2018) might be suboptimal,
both the original GATConv and newer GATv2Conv layers were used in ex-
periments. The GATv2Conv promises stronger expressiveness by including a
non-linear activation function in the attention mechanism.

To evaluate if using topological information is necessary for strong perfor-
mance on this dataset, a Graph Isomorphism Network (GIN) (K. Xu et al.,
2019), described in Subsection 2.7.2, was used. If GIN outperformed models
using attention layers, or graph convolutional layers, it would suggest that
node and edge features are insufficient to represent the mentioned graph.
Furthermore, a combination of attention layers and GIN was used to test if
the inclusion of both mechanisms could provide more robust performance, by
ideally combining the strengths of both methods.

In general, the order of layers in a graph neural network follows the
schema in Figure 5.3a. A chosen graph convolutional layer is followed by
normalization, activation and dropout, which is repeated for the number of
layers before being passed to a final fully-connected linear layer to produce

24

...................................... 5.1. Static graphs

outputs. All evaluated GNN models, except DeeperGCN, in this experiment
follow this schema.

To evaluate one of the recent advancements in graph neural network
architecture, a DeeperGCN (G. Li et al., 2020) model was tested. DeeperGCN
uses residual connections between layers and in (G. Li et al., 2020) the authors
find an ordering of modules that improves performance. They propose an
ordering, which is shown in Figure 5.3b. Using residual connections and a new
convolutional layer they managed to successfully scale the model to hundreds
of layers without encountering oversmoothing, discussed in Subsection 2.8.1.

Normalization

To improve model convergence, normalization layers were used, specifically a
GraphNorm layer (Cai et al., 2021), which normalizes feature 𝑗 of node 𝑥𝑖
using the formula:

GraphNorm(𝑥𝑖,𝑗) = 𝛾𝑗 ⋅
𝑥𝑖,𝑗 − 𝛼𝑗 ⋅ 𝜇𝑗

𝜎𝑗
+ 𝛽𝑗 (5.1)

where 𝜇𝑗 is the mean of the 𝑗-th feature, and

𝜎2
𝑗 =

∑𝑛
𝑖=1 (ℎ̂𝑖,𝑗 − 𝛼𝑗 ⋅ 𝜇𝑗)

2

𝑛
𝛼, 𝛽, and 𝛾 are learnable parameters, and 𝑛 is the number of nodes in the
graph.

Training

Cross entropy loss, defined in Equation 5.2 was used to optimize the model,
optimizer of choice was the standard Adam optimizer (Kingma and Ba,
2017), with an option to reduce learning rate when the training loss stopped
decreasing. Dropout layers, which set neuron weights to zero with a given
probability, were used to prevent overfitting.

Cross Entropy(y, ŷ) = −
𝑛

∑
𝑖=1

𝑦𝑖 log ̂𝑦𝑖 (5.2)

where y is the true label, and ̂y is the predicted label.

Metrics

Standard metrics were used to evaluate the performance, namely accuracy:

Accuracy = # Correct classifications
All classifications

(5.3)

and the area under the receiver operating characteristic curve (AUROC).
ROC shows the true positive rate

TPR = TP
TP + FN

25

5. Proposed Method and Assesment.............................

Input

Linear

Graph Convolution

Normalization

Activation

Dropout

Output

(a) : A diagram of a general
composition of layers in a
graph neural network.

2x

Input

Linear

GENConv

GraphNorm

ReLU

Dropout

Add

Output

(b) : A diagram of the DeeperGCN model used for
the static experiments.

Figure 5.3: Diagrams of graph neural network layer compositions.

26

.................................... 5.2. Dynamic graphs

against the false positive rate

FPR = FP
FP + TN

and the area under the ROC samples different threshold to produce a scalar
for comparisons.

5.2 Dynamic graphs

5.2.1 Dataset

Performance evaluation of temporal graph neural networks was done in two
parts. First, to verify reported performance metrics, selected models were
tested on a standard benchmark dataset, the Temporal Graph Benchmark
(TGB) (S. Huang et al., 2023) was used. Specifically a dynamic node classifi-
cation dataset tgbn-trade, which is a dataset of a trading network between
nations, with edges representing the yearly trade value from one nation to
another. The task is to predict the future trade ratio value between all
nations(S. Huang et al., 2023).

Selected temporal models were then evaluated on a dataset of a citation
network of scientific papers, ogbn-arxiv, which is a benchmark dataset for
static graph neural networks. The dataset was transformed into a Continuous-
time dynamic graph Theorem 3.2. Conversion of the original dataset to
a Discrete-time dynamic graph Theorem 3.1 and usage of corresponding
models was considered, but my main interest in temporal methods is in
continuous-time graphs, as they can be more generally used.

Ogbn-arxiv is a dataset in the Open Graph Benchmark (OGB) (Hu, Fey,
Zitnik, et al., 2021). It is a graph representing papers from arXiv, in the area
of Computer Science. Each node has a feature vector, which corresponds to
a word embedding of each paper’s abstract. A directed edge is present if one
paper cites another. The task is to predict one of 40 subject areas to which a
paper belongs. It is important to note that the labels are noisy, as a paper
can lie at an intersection of multiple areas.

The idea behind this experiment was to evaluate whether temporal GNNs
can match the performance of static GNNs. Furthermore, correct predictions
of node classes could help with analysis of research trends, which is poised to
become a crucial area of study given the increased amount of research papers.
Temporal models are able to produce node embeddings at every timestamp,
which could be used for dynamic clustering to track evolution of the citation
network.

Dataset statistics

Summary statistics of the used datasets are shown in the tables below, tgbn-
trade in Table 5.2 and ogbn-trade in Table 5.3.

27

5. Proposed Method and Assesment.............................
Table 5.2: Dataset statistics of tgbn-trade.

Nodes # Edges # Timestamps

255 468245 31

Table 5.3: Dataset statistics of ogbn-arxiv after conversion to a temporal
dataset.

Data # Nodes # Edges # Timestamps

Train 87599 374839 25
Validation 30238 622466 1

Test 51506 1166243 2

Preprocessing

To convert the original ogbn-arxiv dataset into a continuous-time dynamic
graph, I have extracted timestamps of edges by looking at edge creation as
the time of paper citation. Therefore, to prevent leakage of information from
the test set, timestamp of an edge is the year in which the later paper was
published. This ensures that an edge is created only at a time of the later
paper. The learning task is therefore considered to be inductive. Interaction
features (messages in terminology of PyTorch Geometric) were created by
concatenating both node creation times.

The dataset was then split into training, validation and test sets by time, the
same way as the original static dataset. During temporal node classification,
temporal models use all edges from previous timestamps (including those in
training) to perform message passing and aggregation, but are evaluated only
on nodes in the test or validation set, which is a standard practice.

5.2.2 Baseline models

Since the main idea behind the experiment is to evaluate if using temporal
information with temporal graph neural networks is beneficial, baseline models
are classical graph neural networks, without access to time data. Similarly
to experiments on static graphs in Section 5.1, the two baseline models
are a Multilayer Perceptron (MLP) and a Graph Convolutional Network
(GCN). These models are therefore evaluated on the original ogbn-arxiv
static dataset.

As a baseline for the tgbn-trade dataset, a Moving Average is used.
Moving Average simply averages node labels seen at previous timestamps. It
is therefore usable only in transductive setting, since it relies on observing
previous node labels. This baseline has proven to be a strong contender on
TGB datasets, outperforming all temporal graph neural networks.

28

.................................... 5.2. Dynamic graphs

5.2.3 Selected temporal models

The subsequent temporal models were selected for evaluation:.Temporal Graph Network (TGN) (E. Rossi et al., 2020), which represents
a memory-based model to store node embeddings..Temporal Graph Attention (TGAT) (da Xu et al., 2020), which uses an
attention layer with temporal message passing.. DyGFormer (Yu et al., 2023), a model leading in many TGB benchmarks,
which combines attention with neighbor co-occurrence to encode common
historical neighbors.

DyGFormer (Yu et al., 2023) is a state-of-the-art temporal graph neural
network, the best performing model on several TGB datasets. One of the
improvements the authors claim is that only one-hop historical neighborhood
is extracted, which is then combined with edge and time embeddings. They
also consider the frequency at which nodes appear in the same one-hop
neighborhood, which they call neighbor co-occurrence. This feature is poised
to be helpful in link prediction tasks, because it signifies which nodes are
likely to be close in the graph. The neighbor co-occurrence features are then
fed into the attention layers along with node, edge and time embeddings.

Batch size

It is important to note that for a fair comparison, all temporal graph neural
networks should be used with the same batch size, because changing the batch
size can lead to different results, which was argued in TGN (E. Rossi et al.,
2020). When using a batch size larger than one, there is a chance that a single
node will appear in multiple interactions. Many strategies for aggregation
into a single message exist, such as averaging, using only last interaction, or
a more complicated aggregation function such as using a recurrent neural
network. For temporal models this is a trade-off, as higher batch size improves
training speed, but can lead to forgetting because the aggregation function
is unable to reduce multiple interactions into one message. The detailed
diagram showing parts of this process was shown in Figure 3.1.

Metrics

To reproduce the results of the original papers, the same metrics are used
on the tgbn-trade dataset. It uses the Normalized Discounted Cumulative
Gain (NDCG) score, which is a measure of ranking quality, often used in
recommendation settings.

Discounted Cumulative Gain (DCG) (Järvelin and Kekäläinen, 2002) cal-
culates the relevance of predicted scores 𝐺 = (𝑥1, 𝑥2, … , 𝑥𝑛) by penalizing
later predictions. The formula for DCG is:

DCG =
𝑛

∑
𝑖=1

𝑥𝑖
log2(𝑖 + 1)

29

5. Proposed Method and Assesment.............................
Usually, only k most relevant predictions are accounted for, denoted as

DCG@k (Järvelin and Kekäläinen, 2002).

DCG@k =
𝑘

∑
𝑖=1

𝑥𝑖
log2(𝑖 + 1)

Normalized DCG (NDCG) is then obtained by dividing DCG by the
IDCG(Järvelin and Kekäläinen, 2002),

IDCG =
𝑛

∑
𝑖=1

2𝑥𝑖 − 1
log2(𝑖 + 1)

which assumes perfect ranking scores.

NDCG@k = DCG@k
IDCG@k

(5.4)

All TGB datasets then use the NDCG@10 metric.
The evaluation on the ogbn-arxiv dataset uses standard accuracy, defined

in Equation 5.3.

30

Chapter 6
Experiments

This chapter discusses the experimental results of the proposed models.
Section 6.1 presents the results of experiments on the static hieroglyph
dataset. Section 6.2 deals with temporal datasets, assesses the performance
of temporal graph neural networks on a previously used dataset and applies
them to a novel dynamic node classification task.

6.1 Static graphs

The performed experiment on the hieroglyph dataset was a binary classifica-
tion task. Given an input graph, the task was to predict whether the nodes
are a part of a hieroglyph or not. Because the model is trained and evaluated
on distinct graphs, this task is inductive.

6.1.1 Hyperparameters

To facilitate reproducibility of experiments, used hyperparameters are listed
here. The batch size was 1, to train at one graph at a time. The Adam
optimizer was used, learning rate was set to 0.01, with a reducing factor 0.1
whenever loss function stopped decreasing for at least 5 epochs. Number
of hidden channels to 32, all layers used 3 convolutional layers (except for
the MLP). Dropout was set to 0.5, edge feature dimension was 1. Attention
layers used 4 heads, and results of each head were concatenated together. All
models used the GraphNorm normalization layer and a ReLU as an activation
function. Each model was trained for 100 epochs on each fold.

Division of the dataset into training and testing sets was done using cross-
validation. The dataset with 7 graphs was divided into one fold with 5
training and 2 testing graphs. Out of all possible combinations of folds, 5
possible folds were randomly chosen for evaluation1. To achieve consistent
results, the chosen folds are equal for all models.

1https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
ShuffleSplit.html

31

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html

6. Experiments
6.1.2 Results

All reported results in this chapter are test set results, unless stated otherwise.
Figure 6.1 shows the mean accuracy of tested models across different folds.

Black lines range the weakest and strongest performance on one of the five
folds. DeeperGCN outperforms all other models and achieves a mean accuracy
of 0.9987. Both models with attention layers performed exceptionally well,
achieving a mean accuracy of 0.997. In this experiment there was no difference
in performance between the original GAT layer (Veličković et al., 2018) and
the newer GATv2 version proposed in (Brody et al., 2022). Results of the
multilayer perceptron were significantly lagging behind all graph models, with
a mean accuracy of 0.708. This suggests that inclusion of graph structure
is crucial for the task. On the other hand, the Graph Isomorphism Model
performed the worst out of graph models, with a mean accuracy of 0.914,
leading to a conclusion that only topological information is not sufficient for
this dataset. Surprisingly, even mere inclusion of isomorphism layers with
other convolutional layers led to a drop in performance, which is shown by
the GCN+GIN and GAT+GIN models in Figure 6.1.

0.5 0.6 0.7 0.8 0.9 1.0

GCN
GCN+GIN

MLP
GIN

DeeperGCN
GATv1

GAT+GIN
GATv2

Figure 6.1: Mean accuracy of used models.

To make sure prediction outputs are not biased by the class distribution, a
confusion matrix for one of the fold testing sets was created. The confusion
matrix in Figure 6.3 confirm that the model is able to predict both classes
with exceptional accuracy.

Thanks to the inclusion of graph structure, graph neural networks should
be able to generalize well and perform better than classical neural networks
with a limited amount of training data. To test this hypothesis, experiments
were repeated with a reduced amount of training data. The train test ratio
was changed from 5:2 to 3:4. Results in Table 6.1 confirm that the best
performing graph neural network (DeeperGCN) is able to achieve comparable

32

...................................... 6.1. Static graphs

0.5 0.6 0.7 0.8 0.9 1.0

GATv2
GCN

DeeperGCN
MLP

GAT+GIN
GCN+GIN

GATv1
GIN

Figure 6.2: Mean AUROC of used models

Figure 6.3: Confusion matrix of the best performing model on one of the fold
test sets.

results with less training data, while performance of the MLP decreases by
1.5%.

Table 6.1: Mean accuracy with changed train/test ratio.

Mean accuracy
Model 5 train graphs 3 train graphs Difference

DeeperGCN 0.9987 0.9984 -0.0003
MLP 0.7076 0.6919 -0.0157

33

6. Experiments
Resulting predictions were investigated to find if there are any patterns

in wrong classifications. Misclassifications mainly occur at the boundary
between horizontally and vertically oriented stripes of hieroglyphs, shown
in Figure 6.4.

(a) : Top middle hiero-
glyph was classified as
a separator.

(b) : Wrong node clas-
sifications shown in or-
ange.

(c) : Model’s predic-
tions, hieroglyphs shown
in red.

Figure 6.4: An example of a wrong hieroglyph classification.

6.2 Dynamic graphs

Evaluation of temporal GNNs was done on two tasks. The first task was to
predict the proportion of node values, which represent trade values between
nations in a graph representing a trading network. It is therefore considered
transductive. The second task consisted of a multiclass node classification,
with 40 possible classes. Given a citation graph of scientific papers, the goal
was to predict the class (field of study) of each node (paper). This task should
be considered inductive, because new nodes can appear in the validation and
test sets.

6.2.1 Hyperparameters

To facilitate reproducibility of experiments, used hyperparameters are listed
below. The batch size was set to 256 unless stated otherwise. The Adam
optimizer was used, learning rate was set to 1e-4. Dropout was set to 0.1.
Attention layers used 2 heads and 2 attention layers were used if possible.
Hidden time dimension was 10. During sampling of neighbors, 10 neighbors
were sampled at max. For DyGFormer, number of neighborhood co-occurrence
features was 50. The models were trained for 50 epochs.

Static models (GCN and MLP) used a batch size of 8192, learning rate 0.01,
dropout 0.5, and number of hidden channels was 256. This setting provided
approximately a similar number of neurons to the static and temporal models.

34

.................................... 6.2. Dynamic graphs

Both models used 3 layers and sampled 10 neighbors at each of the first
three-hop neighborhoods.

6.2.2 Results

Table 6.2 shows the validation and test NDCG@10 of the tested models, with
columns labeled as reported showing results from the TGB leaderboard2.
The observed columns show results which were obtained by running the
models on my own. For observed runs, only the best results were selected.
The majority of results are aligned previously with reported values, which
enhances confidence in the validity of the subsequent results. The simple
Moving Average baseline outperforms all temporal graph neural networks by
a significant margin. TGN is able to outperform the other temporal GNNs
on the test set, but results for the validation set are similar for the three
selected models.

Table 6.2: Comparisons of model results on the tgbn-trade dataset.

NDCG@10
Reported Observed

Model Validation Test Validation Test

TGAT2 39.31 ± 0.01 37.40 ± 0.06 0.397 0.381
TGN 0.395 ± 0.002 0.374 ± 0.001 0.394 0.392

DyGFormer 0.408 ± 0.006 0.388 ± 0.006 0.395 0.378
Moving Average 0.841 0.823 0.843 0.809

To investigate the claim that performance of temporal GNNs depends on
the chosen batch size, all experiments were repeated with three different batch
size values. Batch sizes 32, 64 and 200 were chosen. The results in Figure 6.5
show that all models achieved best results with the smallest used batch size,
which confirms the theoretical claim based on the design of temporal GNNs.
Training with all batch sizes was performed for the same amount of epochs,
so that test metrics could be directly confirmed. The results, however, do not
accurately reflect the time-information trade-off of selecting a larger batch size,
which led to faster training times per epoch. The runtime generally decreased
with larger batch sizes, however it was not directly inversely proportional.

After repeating the experiments on the benchmark dataset to ensure
expected functionality of the code, temporal GNNs were evaluated on the
ogbn-arxiv dataset. The results in Table 6.3 show that temporal GNNs
underperformed compared even to the simplest static GNN, the GCN. GCN
even in an inductive setting outperforms other models. The strongest temporal
model is TGAT, which delivers a better result than a multilayer perceptron,
which does not use any temporal information.

2Uses package version 0.9, some results may vary across versions.
2Results of TGAT on tgbn-trade are not present on the TGB leadeboards and are

taken from the DyGLib paper (Yu, 2023).

35

6. Experiments

DyGFormer TGAT TGN
0.35

0.36

0.37

0.38

0.39

0.40

te
st

/n
dc

g

Test NDCG@10 by batch size
Batch size

32
64
200

Figure 6.5: Test NDCG@10 on tgbn-arxiv across batch sizes.

Table 6.3: Comparison of model results on the ogbn-arxiv dataset and its
dynamic equivalent. Strongest temporal model results are underlined.

Model Validation accuracy Test accuracy

TGAT 0.507 0.487
TGN 0.435 0.380

DyGFormer 0.360 0.401
GCN1 0.578 0.536
MLP1 0.502 0.457

Temporal node classification remains to be a very challenging task and
although state-of-the-art models were applied on both temporal datasets,
more effective architectures of temporal graph neural networks are needed
to truly achieve groundbreaking results and overcome static graph neural
networks.

1The difference between performance of GCN and MLP on the OGB leaderboards and
in Table 6.3 is due to the setting. OGB uses transductive learning, while in this experiment
I have used static models inductively to be consistent with usage of temporal models.

36

Chapter 7
Future Work

Although the field of graph neural networks have seen significant advances in
the recent years, due to dramatic surge in popularity, there are still many
open problems. In terms of implementation, the GNN community would
hugely benefit from a library supporting efficient operations for temporal
GNNs. This could further accelerate the field of temporal GNNs the way
Pytorch Geometric has done to static GNNs. Designing and building such
a library would be an interest of mine, but it was outside the scope of this
thesis.

Furthermore, the field of temporal GNNs is still in its early days. Most
architectures of existing models were designed with temporal link prediction
in mind and there is a large space for improvement on temporal node clas-
sification tasks. The field of GNNs and temporal GNNs specifically would
benefit from broader awareness of the advances made in recent years, which
could lead to recognition of new problems where GNNs could be used.

The study of heterogeneous graphs (graphs with multiple types of nodes
and edges) is another fascinating area of research. To limit the scope of the
thesis, heterogeneous graph methods were not discussed, but heterogeneous
GNNs can be applied to knowledge graph analysis, which could provide
promising results.

Graph classification was briefly mentioned in the second chapter. Most
graph classification datasets are of biological nature, such as predicting
characteristics of proteins or discovery of new drugs. Domain knowledge is
crucial when designing sound models for these applications. Using GNNs
in biology is a logical continuation of the work, because of the inherently
graph-like structure.

37

38

Chapter 8
Conclusion

In this thesis, I have explored the field of GNNs and focused on static and
temporal graph neural networks. I have conducted a comprehensive review
of the literature and closely examined several model architectures for both
static and temporal GNNs. Static GNNs were applied to a novel real-world
application to recognize hieroglyphs based on their graph representation.
GNNs have shown impressive improvements compared to traditional neural
networks by utilizing the graph topology. The DeeperGCN model achieved
near perfect accuracy on the hieroglyph task, and proved to be very efficient
in terms of the amount of data needed to achieve solid accuracy.

Examined state-of-the-art temporal GNNs were compared to static GNNs
on the node classification task. The benefits and drawbacks of using temporal
GNNs and their applications in the broader context were discussed.

The thesis has provided me with an opportunity to explore the field of
GNNs, which is a still a seldom studied topic in the artificial intelligence
community. I have become familiar with the inner workings of many of the
Python deep learning libraries, including Pytorch, Pytorch Geometric, and
Lightning. The application of GNNs on the hieroglyph task has guided me
through the process of machine learning development, from data preprocessing
to model evaluation.

39

40

Appendix A
Used Software

In accordance with the Methodological Guideline 05/20231, I list the (AI)
software used during the creation of this thesis:.GitHub Copilot2 for autocompletion of code. Setting to disable sugges-

tions matching public code was used, and only simple one-line completions
were accepted.. ChatGPT3 for minor reformulations and grammar checks.

1https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/
cs/20230922-metodicky-pokyn-c-52023.pdf

2https://github.com/features/copilot
3https://chat.openai.com/

41

 https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/cs/20230922-metodicky-pokyn-c-52023.pdf
 https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/cs/20230922-metodicky-pokyn-c-52023.pdf
 https://github.com/features/copilot
 https://chat.openai.com/

42

Appendix B
Attachments

The following files are attached to this thesis:

source_code
pixi.toml
src

data
hieroglyphs.py
ogbn_arxiv.py
temporal_arxiv.py

models
base_model.py
deeper_gcn.py
gat.py
gat_gin.py
gcn.py
gin.py
mlp.py

train_arxiv.py
train_hieroglyph.py

hieroglyphs_dataset.zip

43

44

Appendix C
Bibliography

Järvelin, K., & Kekäläinen, J. (2002). Cumulated gain-based evaluation of ir
techniques. ACM Trans. Inf. Syst., 20(4), 422–446. https://doi.org/
10.1145/582415.582418

Grover, A., & Leskovec, J. (2016). Node2vec: Scalable feature learning for
networks.

Kipf, T. (2016). Graph convolutional networks. https://tkipf.github.io/graph-
convolutional-networks/

Yang, Z., Cohen, W. W., & Salakhutdinov, R. (2016). Revisiting semi-
supervised learning with graph embeddings.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017).
Neural message passing for quantum chemistry.

Kingma, D. P., & Ba, J. (2017). Adam: A method for stochastic optimization.
Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph

convolutional networks.
Hamilton, W. L., Ying, R., & Leskovec, J. (2018). Inductive representation

learning on large graphs.
Rossi, A., Tiezzi, M., Dimitri, G. M., Bianchini, M., Maggini, M., & Scarselli,

F. (2018). Inductive–transductive learning with graph neural networks.
In L. Pancioni, F. Schwenker, & E. Trentin (Eds.), Artificial neural
networks in pattern recognition (pp. 201–212). Springer International
Publishing.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y.
(2018). Graph attention networks.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., & Hsieh, C.-J. (2019).
Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks. Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining.
https://doi.org/10.1145/3292500.3330925

Falcon, W., & The PyTorch Lightning team. (2019, March). PyTorch Lightning
(Version 1.4). https://doi.org/10.5281/zenodo.3828935

Fey, M., & Lenssen, J. E. (2019, May). Fast Graph Representation Learning
with PyTorch Geometric. https://github.com/pyg-team/pytorch_
geometric

45

https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://tkipf.github.io/graph-convolutional-networks/
https://tkipf.github.io/graph-convolutional-networks/
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.5281/zenodo.3828935
https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric

C. Bibliography
Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph

neural networks?
da Xu, chuanwei ruan, evren korpeoglu, sushant kumar, & kannan achan.

(2020). Inductive representation learning on temporal graphs. Inter-
national Conference on Learning Representations (ICLR).

Li, G., Xiong, C., Thabet, A., & Ghanem, B. (2020). Deepergcn: All you need
to train deeper gcns.

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., & Bronstein,
M. (2020). Temporal graph networks for deep learning on dynamic
graphs.

Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., & Achan, K. (2020). Inductive
representation learning on temporal graphs.

Cai, T., Luo, S., Xu, K., He, D., Liu, T.-Y., & Wang, L. (2021). Graphnorm:
A principled approach to accelerating graph neural network training.

Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y., & Leskovec, J. (2021).
Ogb-lsc: A large-scale challenge for machine learning on graphs. arXiv
preprint arXiv:2103.09430.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., &
Leskovec, J. (2021). Open graph benchmark: Datasets for machine
learning on graphs.

Huang, N. T., & Villar, S. (2021). A short tutorial on the weisfeiler-lehman test
and its variants. ICASSP 2021 - 2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). https://doi.
org/10.1109/icassp39728.2021.9413523

You, J., Ying, R., & Leskovec, J. (2021). Design space for graph neural
networks.

Zeng, H., Zhang, M., Xia, Y., Srivastava, A., Malevich, A., Kannan, R.,
Prasanna, V., Jin, L., & Chen, R. (2021). Decoupling the depth
and scope of graph neural networks. In A. Beygelzimer, Y. Dauphin,
P. Liang, & J. W. Vaughan (Eds.), Advances in neural information
processing systems. https://openreview.net/forum?id=d0MtHWY0NZ

Brody, S., Alon, U., & Yahav, E. (2022). How attentive are graph attention
networks?

Kazemi, M. S. (2022). Dynamic graph neural networks. In L. Wu, P. Cui, J.
Pei, & L. Zhao (Eds.), Graph neural networks: Foundations, frontiers,
and applications (pp. 323–349). Springer Singapore.

Leskovec, J. (2022a). Expressiveness of gnns. https://web.stanford.edu/class/
cs224w/slides/06-theory.pdf

Leskovec, J. (2022b). Permutation invariance and equivariance. https://web.
stanford.edu/class/cs224w/slides/03-GNN1.pdf

Li, P., & Leskovec, J. (2022). The expressive power of graph neural networks.
In L. Wu, P. Cui, J. Pei, & L. Zhao (Eds.), Graph neural networks:
Foundations, frontiers, and applications (pp. 63–98). Springer Singa-
pore.

Wu, L., Cui, P., Pei, J., & Zhao, L. (2022). Graph neural networks: Founda-
tions, frontiers, and applications. Springer Singapore.

46

https://doi.org/10.1109/icassp39728.2021.9413523
https://doi.org/10.1109/icassp39728.2021.9413523
https://openreview.net/forum?id=d0MtHWY0NZ
https://web.stanford.edu/class/cs224w/slides/06-theory.pdf
https://web.stanford.edu/class/cs224w/slides/06-theory.pdf
https://web.stanford.edu/class/cs224w/slides/03-GNN1.pdf
https://web.stanford.edu/class/cs224w/slides/03-GNN1.pdf

....................................... C. Bibliography

You, J., Du, T., & Leskovec, J. (2022). Roland: Graph learning framework
for dynamic graphs.

Huang, S., Poursafaei, F., Danovitch, J., Fey, M., Hu, W., Rossi, E., Leskovec,
J., Bronstein, M., Rabusseau, G., & Rabbany, R. (2023). Temporal
graph benchmark for machine learning on temporal graphs.

Longa, A., Lachi, V., Santin, G., Bianchini, M., Lepri, B., Lio, P., Scarselli, F.,
& Passerini, A. (2023). Graph neural networks for temporal graphs:
State of the art, open challenges, and opportunities.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., & Polosukhin, I. (2023). Attention is all you need.

Yu, L. (2023). An empirical evaluation of temporal graph benchmark.
Yu, L., Sun, L., Du, B., & Lv, W. (2023). Towards better dynamic graph

learning: New architecture and unified library.
Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voznesensky, M., Bao,

B., Bell, P., Berard, D., Burovski, E., Chauhan, G., Chourdia, A.,
Constable, W., Desmaison, A., DeVito, Z., Ellison, E., Feng, W., Gong,
J., Gschwind, M., … Chintala, S. (2024). PyTorch 2: Faster Machine
Learning Through Dynamic Python Bytecode Transformation and
Graph Compilation. 29th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Volume 2 (ASPLOS ’24). https://doi.org/10.1145/3620665.3640366

Fey, M., & Lenssen, J. E. (2024). Advanced mini-batching. https://pytorch-
geometric.readthedocs.io/en/2.5.3/advanced/batching.html

Mařík, R., Landgráfová, R., & Liška, J. (2024). Ancient egyptian hiero-
glyphic texts structure identification. Submitted to ACL ML4AL 2024
Workshop.

47

https://doi.org/10.1145/3620665.3640366
https://pytorch-geometric.readthedocs.io/en/2.5.3/advanced/batching.html
https://pytorch-geometric.readthedocs.io/en/2.5.3/advanced/batching.html

	Introduction
	Motivation
	Structure

	Graph Neural Networks Review
	Terminology
	Learning tasks
	Inductive and Transductive learning
	Weisfeiler-Lehman (WL) graph isomorphism test
	Representation learning
	Graph Convolutional Networks
	Message Passing Graph Neural Networks
	Attention layers
	Graph Isomorphism Network

	Dataset sampling
	Oversmoothing

	Temporal Graph Neural Networks Review
	Introduction
	Definitions
	Temporal learning tasks

	Discrete-time dynamic graphs
	Continuous-time dynamic graphs
	Temporal Message Passing
	Temporal Graph Attention layer

	Implementation Details
	Proposed Method and Assesment
	Static graphs
	Dataset
	Baseline models
	Proposed models

	Dynamic graphs
	Dataset
	Baseline models
	Selected temporal models

	Experiments
	Static graphs
	Hyperparameters
	Results

	Dynamic graphs
	Hyperparameters
	Results

	Future Work
	Conclusion
	Used Software
	Attachments
	Bibliography

